

Natureglo's eScience Copyright 2015

Revised 12/31/16

Permission is granted to reproduce this PowerPoint per student in a

 one family household, per student \& teacher in one teacher's classroom and for the purchaser's personal use only. Please notify me at gab21921@gmail.com for other circumstances. Thank you.Cover image - The Great Pyramid of Egypt photographed by Nina Aldin Thune. Background image behind the pyramid are the base stones of the same pyramid photographed by Musik Animal. Text fill of the Great Pyramid's stones photographed by Bs0u10e0.

The Great Pyramid of Dgypt

- Other names - Pyramid of Khufu, Pyramid of Cheops, The Great Pyramid, The Great Pyramid of Egypt, The Great Pyramid of Giza
- Oldest, largest of three Giza, Egyptian pyramids bordering what is now El Giza, Egypt

Background image created by By Manshy482

- Oldest \& only one left mostly intact ofall Seven Wonders ofancientworld
- Believed to be builtespharaoh Khufu's
(2575-2566 BC)
tombover 20? year period
- Búle 2580-2560 BC

The Great Pyramid: One of the 7 Wonders of the Ancient World \mathcal{E} its Builder

- Many theories of use including, a power generator and star observatory
- Original height - 146.5 meters (481 feet), tallest in world for over 3,800 years
- Son of Snefru, Khufu (second ruler of 4th dynasty) moved to royal necropolis to Giza, north of modern-day Cairo
- Khufu paid and cared for thousands of subjects to build his Great pyramid
- On Giza Plateau, builders oriented pyramid almost perfectly north

Ivory Statue of Khufu in the Cairo Museum. Image in the public domain.

Background image - The Great Pyramid photographed by Jorge Láscar; top frame the stones of the Great Pyramid photographed by Jon Bodsworth.

Numbers of Materials 8 Stone Gutting

Estimated Number of Materials Traditional stone cutting belief:
Used:

- 5.5 million tons of limestone for outer pyramid casing
- 8,000 tons of granite (imported from Aswan) for core
- 500,000 tons of mortar

The Great Pyramid's Building Materials \& Transportation

- Estimated 2.3 million blocks used
- Blocks probably transported from nearby quarries
- Limestone casing quarried across river from Tura, Egypt
- Largest granite stones - found in "King's" chamber, weigh 25 to 80 tons; transported from Aswan, more than 800 km (500 mi) away
- Cut blocks carried by boat either up or down Nile River to pyramid

The Royal Cubit (side bar left) was used in the Great Pyramid's building measurements. Sidebar cubit rod photographed by Bakha.

Background image - Stone blocks from the Great Pyramid photographed by BsOu10e0

The Great Pyramid Complex

- Centerpiece - Great Pyramid
- Several smaller pyramids
- 5 boat pits
- A mortuary temple
- A causeway
- A valley temple
- Many flat-roofed tombs for officials \& royal family members

Images - All of the Giza Pyramid complex; background photographed by Wknight94; upper border by Kallerna and smaller image photographed in 1910 by Uvo Holscher.

\mathbb{M} (p off the Pyiamids off Gizw Complex

Images: map by Messer Woland; top frame and background transparency photographed by Captmondo.

1. Pyramid of Khufu
2. Pyramid of Khafre
3. Pyramid of Menkaure
4. Modern cemetery
5. Southern field of mainly rock-cut tombs
6. Funerary Temple of Khafre
7. Funerary Temple
8. Enclosure wall
9. Mastabas and rock-cut tombs
10. Subsidiary pyramid
11. Western cemetery
12. Valley Temple of Khafre31. Eastern cemetery
13. Valley Temple of Menkaure
14. Queen Hetepheres's
15. Central field of Mastabas and rock-cut tombs tombs
16. Tomb of Queen

Khentkawes
11. Pyramids of Queens
12. Mastabas
13. Great Sphinx
14. Temple of the Sphinx
15. Tomb of Hemon
16. Office of pyramids studies
17. Ticket office
18. Boat pits
19. Modern road
20. Rock cut tombs
21. Builders' quarters
22. Cairo
23. Village of Nazlet el-

Samman
24. Causeway
25. Menkaure quarry

The Great Pyramid © the Golden Ratio

Background
Evidence reveals the following mathematics are found in the Great Pyramid. Each will be addressed on the following slides:

- Phi, or Golden Ratio; appears throughout nature
- Pi - circumference of a circle in relation to its diameter
- Pythagorean Theorem - Founded by Pythagoras (about $570-495$ BC) with formula as $a^{2}+b^{2}=c^{2}$

Dimensions of the Great Pyramid in Royal Cubits

- Golden ratio relationship to Great pyramid revealed in Egyptian royal cubit dimensions
- Egyptians may have used right angled triangle to determinate pyramid's angle of inclination

Review of the Golden Ratio or Phi

- Other names - several including Phi, golden ratio, golden section, golden mean, divine proportion
- Ratio - an irrational, infinite number: 1:1.618033988749894 85...
- Found in - art, architecture, design, nature
- Ratio used throughout history and today for aesthetic beauty
Diagram by Sparkie82

$a+b$ is to a as a is to b

What is Pi or $\boldsymbol{\pi}$?

What is Pi ?

- Ratio of a circle's dimensions
- Circumference \div diameter $=$ 3.1415926535897932...etc.
- Pi and Phi - irrational numbers

Image in the public domain.

What are irrational numbers?

- Cannot be fractions
- Infinite number of digits to decimal
- Don't end with infinitely repeating digit patterns

Images - Background: Carvings of Khufu from Valley of Caves in the public domain. Side bar frame of the Great Pyramid's blocks by BsOu10e0.

The Great Pyramid, a Golden Pyramid?

- Phi ratio also found in triangle formed by height, half-base, and apothem, or diagonal
- Basic cross-section demonstrates golden ratio

Images - Background: Sun over the Great Pyramid photographed by Kheops. Upper border: Relief from Ramses II Temple photographed by JMCC1.

612.01/377.9 royal cubits $=1.61950$.. very close to the Golden ratio!

Diagram created by Gloria Brooks.

- Pyramid base - measures 755.8 cubits; half being 377.9 cubits
- When divided by length of one of its inclined sides (612 cubits), result is 1.619
- 1.619 very close to divine ratio

The Great Pyramid © the Golden Triangle

The Kepler or Golden triangle:

- Johannes Kepler (1571-1630), astronomer, wrote about it
- A right or golden triangle found in Great pyramid
- Formed by three golden ratio squares or triangle's square edges (see figure) make golden ratio

Images: Pyramid image by by Dicklyon Creative Commons license \& derivative shading work by Gloria Brooks. Top frame of Sphinx's head by Barcex.

The Great Pyramid © the Golden Ratio

- Has b (base) of length $1+$ Phi (a) = Phi ${ }^{2}$, or height (h) of right triangle is square root of phi (a)
- Less than 0.025\% from perfect golden triangle pyramid
- Using Pythagorean theorem $\left(a^{2}+b^{2}=c^{2}\right)$, this triangle represents one of golden ratio's unique properties or $1+$ Phi $=$ Phi ${ }^{2}$

The Kepler Triangle \mathcal{E} the Pi Based Great Pyramid

- Regular square pyramid determined by its medial right triangle (Kepler triangle)
- Edges (diagram lower right) pyramid's apothem (a), semibase (b), and height (h)

The Egyptian Seked was a measurement unit likely used for finding the Great Pyramid's slope.
On the Seked, it is based on 5 palms finding the Great Pyramid's slope.
On the Seked, it is based on 5 palms and 2 digits.

- Mathematical proportions equal the golden number 1.61899...
- Slope of $51^{\circ} 52^{\prime}$; extremely close to "golden" pyramid inclination of $51^{\circ} 50^{\prime}$

Pyramid image by by Dicklyon Creative Commons license \& derivative shading work by Gloria Brooks.

The Great Pyramid, A Golden Pyramid?

A golden perpendicular triangle
The Great pyramid's diagonal golden triangle

Pyramid images by Dicklyon, Creative Commons license with derivative shading work by Gloria Brooks.

Top frame image of Egyptian hieroglyphics carved into stone and background transparency of relief stone carvings from the book, Description of Egypt from the late $17^{\text {th }}$ century.. Images in the public domain.

The Rope Stretcher's Triangle, or the 3-4-5 Triangle with use of the Pythagorean Theorem

- Other names - RopeKnotter's triangle, Pythagorean triangle
- Evidence shows Egyptians used rope knotted into 12 sections stretched to form 3-4-5 triangle
- Can it make a right angle?
- Was it used in building the Great pyramid?

Image by Pythagoras
abc.png: nl:Gebruiker:
Andre_Engels

The Pythagorean theorem states:

- "In a right triangle, the square of the hypotenuse equals the sum of the squares of the legs."

The converse of is also true:

- "If the square of one side of a triangle equals the sum of the squares of the other two sides, then we have a right triangle."

[^0]
The 3-4-5 Triangle Continued

3-4-5 Triangle useful for determining if an angle is a right angle:
$5^{2}=3^{2}+4^{2}$
$25=9+16$

- It checks!
- Reveals rope knotted this way gives right angle

Public domain image.

The Great Pyramid's Concave Faces

- 4 faces precisely concave \& hollowed to inside
- An 8-sided pyramid, rather than 4 -sided like most pyramids
- Invisible on ground; only noticed from air
- March 21, 1940 - British air force pilot flying over Giza Plateau discovered \& photographed

Possible concavity uses include:

- Prevent casing stones from sliding; better bond nucleus to casing
- Aesthetic one: concave faces pleasing to view

Great Pyramid's Concave Faces \& Phi

- Value of Phi, equal to secant of face angle of inner triangle, same as ratio between slant height of pyramid and half its baselength

- Phi applies to all 8 rightangle triangular faces
- Each 8 -sided face confirms with golden ratio proportion: it is inscribed into golden rectangle where height/ base = Phi

Learn more about the Golden ratio and the Great pyramid by visiting NatureG1o's eScience MathArt Virtual Library at the link below.

http://hascmathart.weebly.com/the-great-pyramid.html

The Great Pyramid's nor theast view photographed by Jon Bodsworth Copyright Free Use.

1. National Geographic -
http://www.nationalgeographic.com/pyramids/khufu.html
2. World Mysteries: The Golden Ratio \& Squaring of the Circle of the Great Pyramid: http://www.world-mysteries.com/mpl 2.htm\#Socrates
3. Wikipedia - Golden Ratio article: https://en.wikipedia.org/wiki/Golden_ratio
4. Pyramid Geometry - https://pyramidgeometry.wordpress.com/
5. Dartmouth College -
https://www.dartmouth.edu/~matc/math5.geometry/unit2/unit2.html

Egyptian hieroglyphics photographed by by Michael Holford.

[^0]: Egyptian images all from the Description of Egypt from the $17^{\text {th }}$ century and in the public domain.

