

Natureglo's eScience Copyright 2015 Revised 1/3/17 Permission is granted to reproduce this PowerPoint per student in a one family

household, per student & teacher in one teacher's classroom and for the purchaser's personal use only. Thank you.

Cover image – Islamic archway, image in the public domain. Background image of a quasicrystal electron microscope diffraction by Materialscientist. Image of the Ho-Mg-Zn (Holmium-Magnesium-Zinc) dodecahedron quasicrystal photographed by AMES lab., US Department of Energy.

You can connect with Natureglo's eScience on Google at gab21921@gmail.com

What is a Quasiperiodic Crystal, or Quasicrystal?

- Unusual atomic crystal arrangements including 5, 8, 10, and 12-fold symmetries found in aluminum alloys & certain polymers (synthetic plastics & resins)
- Atomic pattern fills space without repeating itself
- April 8,1982 Previously believed impossible, discovered by Israeli materials scientist, Dan Schectman
- Usual crystallographic crystals only with 2, 3, 4, and 6fold rotational symmetries; no higher numbers

Images – Aluminum alloy atomic electron microscope diffraction photographed by Materialscientist.

Quasicrystal Atomic Symmetry

- Quasicrystalline pattern continuously fills plane space; lacks translational symmetry
- Translational symmetry a figure's symmetry, which quasicrystals lack, when if moved (or copied) in any direction (horizontally, vertically, diagonally) remains same after translated or moved and can be repeated infinitely
- Bragg electron microscope diffraction pattern (see images right) quasicrystals shows sharp peaks with 5, 8, 10 and even 12-fold symmetries

Images by Materialscientist. Bottom derivative work by Jgmoxness.

What symmetry is this revealing?

Usual Symmetry Types found in Crystallography

2-fold Symmetry

Equilateral triangles can tile the Euclidean plane with 3 around each vertex, with each triangle having an internal angle of 60°.

Squares can tile the Euclidean plane with 4 around each vertex, with each square having an internal angle of 90°.

6-fold Symmetry

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which three hexagons meet at each vertex.

Created by Tomruen

han Tomruen's tessellated hexagons, all other images in the public domain.

What about 5-fold Symmetry?

- Three pentagons with common vertex don't tile plane
- Plane tiling with pentagons impossible
- How exactly can quasicrystals work with 5, 10 and even 12fold symmetry?
- Realized on sphere in form of pentagonal dodecahedrons
- More on this later!

Image created by Sadoc JF.

Quasicrystals - Long Road to Discovery & Acceptance

- Early 1960's aperiodic (or irregular) tilings discovered by mathematicians; some twenty years later, found to apply to quasicrystals study
- Fields of crystallography changing due to discovery of aperiodic forms in nature
- Quasicrystals investigated & observed earlier, but, until 1980s, were disregarded in favor of prevailing views about atomic structure of matter (with only 2, 3, 4, 6-fold symmetries allowed)
- 2009 mineral finding, icosahedrite, reveals evidence for quasicrystals natural existence

Background image & sidebar - diffraction pattern of the natural Al63Cu24Fe13 quasicrystal found in khatyrkite (a rare mineral). Redrawn after Bindi, Luca; Paul J. Steinhardt, Nan Yao, Peter J. Lu (2009-06-05) created by Materialscientist.

Quasicrystal's Discovery

- 1982 materials scientist Dan Shechtman observed with electron microscope that certain aluminum-manganese alloys produced unusual diffractograms seen now as revelatory quasicrystal structures
- Took him two years to publish results from scientific community's negative resistance 2011 - Dan Shechtman awarded Nobel Prize in chemistry for quasicrystal discovery

Background image & sidebar: Ho-Mg-Zn (Holmium-Magnesium-Zinc) dodecahedron quasicrystal photographed by AMES lab., US Department of Energy.

Dan Shechtman photographed by by Technion - Israel Institute of Technology

The Two Known Quasicrystal Types

- Since Dan Shechtman's discovery, hundreds of quasicrystals reported and confirmed
- Exist universally in many metallic alloys and some polymers (plastics & resins)
- Found most often in aluminum alloys, but numerous other compositions known

The two types of known quasicrystals:

- 1. Polygonal (dihedral) axis of 8, 10 or 12-fold symmetry (octagonal, decagonal, or dodecagonal)
- 2. Icosahedral aperiodic (irregular) in all directions

(a) Dodecahedral Zn-Mg-Ho single QC grain (b) Icosahedral Al-Mn QC flowers. Images in the public domain.

Background image & sidebar décor - Atomic model of fivefold icosahedral-Al-Pd-Mn quasicrystal surface created by J.W. Evans, The Ames Laboratory, US Department of Energy.

Quasicrystalline Minerals

- Rock sample with mineral khatyrkite
- Atomic diffraction patterns image obtained from thin region of granule with red dashed circle
- Atomic image displays five-fold symmetric, pattern characteristic of quasicrystals

Dannis Kepple MON VND BRIV. Qyo

, De Figurarum Regula infituunt, ortu & demo sucvs, feu ex Grossra um Congruentia in plan osicvs, De Proportioni e Natură & Differentiis Veteres:

s., Psychologicys & As Effentsi earumque gener diorum, excorporibusco que effectu in Natura fe

ium, ortuque Eccentric

arationem huius Operis cumque Roberti de Fluch tionibus Harmonicis, op

.M⁴. Prinilegio ad anno incii Auftriæ, predi Tampace bat Ioannes Pla

NNO M. DC. XI.

Kepler's Monsters from His Book, Harmonices Mundi

Kepler usually credited with first systematic explanation of semiregular or 11 Archimedean tessellations composed of regular polygons 1619 Illustrated plate from *Harmonice Mundi* containing diagrams shown right

Kepler's "Monsters" (Aa) from his 1619 book, *Harmonice Mundi* (Latin for Harmony of the World).

Images of pages from Harmonices Mundi (including thumbnail, frame and background transparencies) and the diagram, all in the public domain.

Keplar's "Monsters"

- "Monsters" or tilings Kepler described tiling built with pentagons, pentagrams, decagons, and "fused decagon pairs," in *Harmonice Mundi*
- 1973 Kepler's diagrams inspired English professor of mathematics & physics, Roger
 Penrose, to create his
 "Penrose tiles"

Penrose Tiles

- Roger Penrose created geometric relationship approximately modeling quasicrystals
- What are Penrose tiles? small non-identical shapes arranged to fill a space completely
- Original Penrose tile
 creation wasn't to describe
 quasicrystals

Sir Roger Penrose photographed by Biswarup Ganguly.

Penrose sun, third generation (background transparency & frame too too) created by GFDL-SELF.

Penrose Tiles

Simplest Penrose tiling construction – made with two tiles: usually "fat" and "thin" rhombi
Most tile arrangements either periodic – with definite translational symmetry, resembling a crystalline structure or random; arranged in disordered way, resembling amorphous structures

Randomness varies
Arrangements infinite

Fat and thin rhombi created by Geometry Guy.

All Penrose tile images are in the public domain.

Penrose Tiles & The Golden Ratio

Penrose combined the triangles in a regular pentagon (all sides equal) to create two pair sets of tile types. The relationship of the pentagon sides and the triangles are Phi, 1 and 1/Phi. A public domain image.

Pair set #1: A set of Penrose tiles called the "kite & dart". Image created by Toon Verstraelen.

Pair set #2: A set of diamonds also called "fat and thin rhombi".

Penrose Tiles fill space with 5-fold Symmetry Based on Phi

- Penrose tiles allow 2dimensional area to be filled in 5-fold symmetry, using 2 phi-based shapes; previously thought impossible
- Penrose kite and dart create a golden rhombus
- Rhombus diagonals in phi ratio

A 3-D Golden rhombus (background & sidebar too) created by Tomruen.

Penrose tiles, made up of Phi, give us a geometric representation of quasicrystal molecules and atoms. Therefore, Phi makes up quasicrystals.

A Penrose tiling with its corresponding inflated tiling overlaid in black created by Sverdrup. Atomic model of five-fold icosahedral-Al-Pd-Mn quasicrystal surface.

Peter Lu's Girih Tiles with Observations of Islamic Tile Design

- 2007 Physics graduate student at Harvard, Peter Lu discovered Girih tiles, what Islamic architects most likely used in their designs (pictured right)
- Lu noticed striking similarity between certain Islamic medieval mosque mosaics and quasicrystal atomic structures

The Girih Tiles

Image created by Cronholm144.

Background & sidebar image – Islamic tilation.

Girih Tiles found in Islamic Topkapi Scroll

- Girih patterns in medieval Islamic architecture developed by designers as network of zigzagging lines, where lines drafted directly onto tiles with straightedge and compass
- Girih tiles match many Islamic tiling patterns and Penrose tile dart/kites

Topkapi scroll. Image in the public domain.

The Girih Tiles as a Penrose Tiling

Images created by Peter Lu.

The Girih Tiles fit the tiling of the Darb-i Imam Shrine (and many other tilings)

Islamic Tile Design & Quasicrystal Relationship

- 1200 C.E. girih patterns reconceived as tessellations of special set of equilateral polygons (girih tiles) decorated with lines
- Tiles enabled creation of increasingly complex periodic girih patterns

Islamic tile design exhibiting quasicrystalline behavior. Image in the public domain.

Islamic Mathematicians & Artists Ahead of their Time?

Strong evidence reveals:

 Islamic
 mathematicians and artists discovered
 quasicrystalline
 properties of
 "Penrose tilings"
 hundreds of years
 before Kepler

Quasicrystal type pattern in decagonal strapwork above an arch in the Abbasid al-Mustansiriyya Madrasa in Baghdad, Iraq, which dates to between 1227 and 1234. Image in the public domain.

Quasicrystal Uses

- Surface coating as aluminum alloys
- Frying pans coated on inside with Aluminum Nickel Cobalt alloy; high electrical and thermal resistivity
- Steel reinforcement
- Razor blades
- Surgeon's instruments
- Sandvik, a company in Sweden, produces a precipitation-hardened stainless steel strengthened by small quasicrystalline particles; doesn't corrode

A razor blade by Pixabay and in the public domain.

Image by Cooks & Kitchens.

Learn more about quasicrystals by visiting NatureGlo's eScience MathArt Virtual Library link below.

http://hascmathart.weebly.com/quasicrystals.html

A "Girih tile subdivision found in the decagonal girih pattern on a spandrel from the Darb-e Imam shrine." Image in the public domain.

References

- 1. Wikimedia quasicrystal article: <u>https://en.wikipedia.org/wiki/Quasicrystal</u>
- Lu, P. J.; Steinhardt, P. J. (2007). "Decagonal and Quasi-Crystalline Tilings in Medieval Islamic Architecture". Science 315 (5815): 1106–1110. Bibcode:2007Sci...315.1106L. doi:10.1126/science. 1135491. PMID 17322056
- 3. Wikipedia Girih Tiles article: https://en.wikipedia.org/wiki/Girih_tiles
- 4. The Tiles of Infinity: <u>http://www.aramcoworld.com/issue/200905/</u> <u>the.tiles.of.infinity.htm</u>
- 5. Wikipedia Penrose tiling article: https://en.wikipedia.org/wiki/Penrose_tiling

Images (all the same) – Penrose tiling by Inductiveload and in the public domain.

Thank you for watching!

A 6-Cube-Quasicrystal created by Jgmoxness.